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The one-to-one correspondence has been revealed between a set of cosets of the

Mathieu group M11, a set of blocks of the Steiner system S(4, 5, 11) and 11-

vertex equi-edged triangulated clusters. The revealed correspondence provides

the structure interpretation of the S(4, 5, 11) system: mapping of the biplane

2-(11, 5, 2) onto the Steiner system S(4, 5, 11) determines uniquely the 11-vertex

tetrahedral cluster, and the automorphisms of the S(4, 5, 11) system determine

uniquely transformations of the said 11-vertex tetrahedral cluster. The said

transformations correspond to local reconstructions during polymorphic

transformations in metals. The proposed symmetry description of polymorphic

transformation in metals is consistent with experimental data.

1. Introduction

Classic crystallography cannot describe polymorphic trans-

formations since the space group is the closed set of defined

rigid motions (conserving distances between points). Different

structures as interpretations of different tilings of the three-

dimensional Euclidean space E3 can belong to the same space

group (Delgado Friedrichs et al., 1999). On the other hand,

widespread metal structures with the face-centred cubic (f.c.c.)

and body-centred cubic (b.c.c.) lattices are representations of

topologically equivalent tilings onto tetrahedra and octahedra

but with different space groups and, specifically, these groups

are not capable of mapping a breakdown of the edge-equality

condition while passing from the f.c.c. to b.c.c. lattice. Gener-

alized crystallography [the term was introduced by Mackay

(2002)] overcomes the limitations of classic crystallography by

means of an extension of its symmetry basis. The symmetry

basis of generalized crystallography includes structural appli-

cation of several theories: n-dimensional lattices, finite

geometries, algebraic groups, combinatorial analysis and also

closely related sections of mathematics. Base mathematic

constructions are contained in fundamental monographs

(Conway & Sloane, 1999; Coxeter, 1973; Dubrovin et al.,

1990). For example, it was suggested that one should use a

polytope approach to describe structures of condensed phases

(not only crystalline ones); in particular, such an approach

allows one to generate structures by straightening into the E3

three-dimensional fragments of four-dimensional polytopes

(Kléman & Sadoc, 1979; Sadoc & Mosseri, 1993; Sadoc &

Charvolin, 1992).

In the framework of the polytope approach there were also

attempts to describe the polymorphic transformations

between f.c.c., b.c.c. and h.c.p. (hexagonal close-packed)

structures of metals. An action of the 2�-disclination on the

‘rhombus’ formed by two adjacent triangular faces of a coor-

dination polyhedron has been considered as an elementary act

of any polymorphic transformation (Kraposhin et al., 2002,

2003, 2006). The 2�-disclination corresponds to the element

�1 of the subgroup G0 of polytope symmetry group, where G0

is the lift of the point group G into group SU(2) (Nelson,

1983). The result of that action is reduced to the substitution

of the short rhombus diagonal (corresponding to a chemical

bond in a structure) by the long diagonal, i.e. to change the

number of edges meeting at a given vertex (Fig. 1). In this case

numbers of vertices, edges and faces of the polyhedron are

unchanged. Models by Kraposhin et al. (2002, 2003, 2006)

predict as the natural consequence both rigid orientation

relationships between transformation participants, and also a

singular set of the symmetry-possible habit planes of the

martensite in steels. It is remarkable that this set of habit

planes contains all martensite habit planes experimentally

observed in steels, including the {225} habit plane which

cannot be explained by any of the other existing martensite

theories (Kraposhin et al., 2002, 2003). The agreement of these

predictions with experiments is evidence of the adequacy of

polytope models.

Such a description is in complete coincidence with the

model by Lipscomb (1966) for the transition between two

space isomers of the icosahedral C2B10H12 molecule: this

transition is considered as a cyclic sequence of transformations
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of the rhombus consisting of two triangular faces of an

icosahedron into the square face of a cuboctahedron and vice

versa.

There are some peculiarities of polymorphic transforma-

tions which cannot be rationalized in the framework of the

polytope approach. In accordance with the model of the b.c.c.–

h.c.p. transition (Kraposhin et al., 2006) the transfer from the

14-vertex rhombic dodecahedron of the b.c.c. structure to the

12-vertex cuboctahedron of the h.c.p. is effected successively

through two intermediate 11-vertex joins of polyhedra (clus-

ters): three distorted octahedra sharing a common edge (Fig.

2a) and eight regular tetrahedra sharing common faces (Fig.

2b). In this paper we name as a cluster the join of equi-edged

triangulated polyhedra. Both intermediate clusters possess the

threefold rotation axis and the mirror plane orthogonal to this

axis. Although the number of vertices is ‘noncrystallographic’,

both 11-vertex clusters are very abundant in experimentally

observed crystal structures. The octahedral 11-vertex variant is

the structural fragment of the hexagonal high-pressure phase

of Ti and Zr metals and can be preserved at atmospheric

pressure by alloying (the so-called !-phase). The octahedral

11-vertex cluster is also a fragment of the structure type AlB2.

The 11-vertex join of three octahedra forms a continuous

network in the (0001) plane of the !-phase structure and AlB2

structures as the common part of three adjacent hexagonal

prisms. In the structure of the CsMgD3 deuteride the octa-

hedral 11-vertex polyhedron exists as an isolated cluster with

deuterium-occupied vertices, while Mg atoms centre each

octahedron (Renaudin et al., 2003). The tetrahedral 11-vertex

cluster is the common part of three intersecting icosahedra in

the crystal structures of several intermetallic compounds such

as Al5Co2, Al10Mn3, �-brass, Ti2Ni and others (Schubert,

1964). The isolated tetrahedral 11-vertex cluster of In and Tl

metals (Fig. 1b) exists in the structure of K8In11 and K8Tl11

compounds (Sevov & Corbett, 1991; Xu & van der Lugt,

1993), and neutron diffraction data evidence the preservation

of the tetrahedral Tl11 cluster in the liquid state (Xu et al.,

1993). A summary of the abundance of 11-vertex clusters is

given in Table 1. This table does not claim to be exhaustive.

One must note that both variants of the 11-vertex cluster are

present as isolated clusters or as fragments of a continuous

network.

Utilization of 2�-disclinations in the framework of the

polytope approach by Kraposhin et al. (2002, 2003, 2006) was

limited intrinsically by clusters with symmetries determined by

the subgroups of the polytope symmetry groups. In particular,

in Kraposhin et al. (2002, 2006) an adequate description for

certain types of cluster transformations was obtained by using

the eight-dimensional E8 lattice (Conway & Sloane, 1999) in

which both four-dimensional polytopes and three-dimensional

crystallographic lattices can be embedded. A tetrahedron is

the simplex of the E3 space; thus to map the symmetry of the

specific tetrahedra face-to-face joins is a very urgent problem,

especially for metallic structures. The face-to-face joins of

tetrahedra are simplicial complexes, and one section of

modern geometry is dedicated to mapping the symmetry of

such joins (Dubrovin et al., 1990). In particular, Babiker and

Janeczko have fulfilled an examination of the algebraic

structure of tetrahedral chains with face-to-face joining

(Babiker & Janeczko, 2012).

The aim of this paper is to define a singular class of 11-

vertex triangulated equi-edged clusters in the framework of

generalized crystallography. We are presupposing a unique

determination of polymorphic transformation in metals by the

symmetry-possible transformations of clusters belonging to

this class.

As will be shown, these transformations can be determined

in the frameworks of generalized crystallography. We are

starting from the assumption that this task can be solved by
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Figure 2
Two variants of the 11-vertex triangulated cluster. (a) The straightened
fragment of the {3, 4, 3} polytope: three octahedra sharing a common edge
(a polytope projection starting from an edge). This variant coincides with
crystalline structure fragments of the high-pressure phase of Ti and Zr
metals (!-phase), and compounds AlB2, Ni2In, CsMgD3. (b) The
straightened fragment of the {3, 3, 5} polytope: eight regular tetrahedra
joined in the face-to-face mode (a polytope projection starting from a
face). It is in coincidence with crystalline structure fragments of
compounds K8In11, K8Tl11, Al5Co2, Al10Mn3 etc.

Figure 1
The elementary act of a polymorph transformation is developed through
the sequence (a) to (e): a 2�-disclination changes a short diagonal by the
long one in the rhombus consisting of two equilateral triangles, thus
changing the rhombus orientation in a plane. When two diagonals
become equal the intermediate square configuration arises. The action of
the 2�-disclination on the dual of the shown structure coincides with the
T1-process by Rivier (1999).



the use of a specific projective linear PSL2(11) group of the 11

� 60 = 660 order which is defined over the Galois field of

order 11. The Galois field of the p order GF(p) is the set of all

residues 0, 1, . . . , p � 1 after division of positive integers by

prime number p, and the laws of addition and multiplication

by p modulus are introduced in this set. That assumption

permits us to seek the symmetric solution of the polymorphic

transformation problem in the framework of the t-(v, k, �)

design formalism; here the t-(v, k, �) design is the set of v

elements subdivided into k element subsets (blocks) such that

every t element is contained in exactly � blocks (Conway &

Sloane, 1999). This paper will show the existence of a specific

t-(v, k, 1) design whose symmetries can adequately map

polymorphic transformations.

2. Origin of the 11-vertex cluster

Amongst the t-(v, k, �) design it is possible to distinguish the

t-(v, k, 1) design, or the so-called Steiner systems S(t, k, v). The

automorphism groups of S(4, 5, 11), S(5, 6, 12), S(4, 7, 23) and

S(5, 8, 24) are known as the Mathieu groups M11, M12, M23 and

M24, respectively (Brown, 2004, p. 98).

The M11 group is the supergroup to the PSL2(11) group,

which is the automorphism group for one t-(v, k, �) design,

namely for the so-called biplane 2-(11, 5, 2).

The motivation for a transfer to the structure symmetry

description in terms of the groups PSL2(p), p = 7, 11 has been

clearly formulated by Konstant (1995) in relation to the

problem of representing adequately the symmetry of the C60

molecule. There are several sphere tilings (an icosahedron,

dodecahedron, truncated icosahedron etc.) belonging to the

same point group Yh of the icosahedron. This situation is

identical to ordinary crystals where different crystalline

structures belong to the same space group (see above and

Delgado Friedrichs et al., 1999). The problem of the structure

description for C60 and three-dimensional carbon networks

has been solved (Konstant, 1995; Lijnen et al., 2007) by utili-

zation of the PSL2(p), p = 7, 11 groups; here the rotation group

of the icosahedron Y is the subgroup of the PSL2(11) group.

Konstant (1995) notes: ‘The 60-element set PSL2(11)/Z11 has a

natural structure of the graph of the truncated icosahedron’,

i.e. C60 molecule (here Z11 is the cyclic group of order 11,

660:11 = 60). Also, Konstant (1995) has defined the 11-element

set PSL2(11)/A5 determining a biplane geometry (A5 is

isomorphic to Y with the order of 60). However, the structural

interpretation of this 11-element set has not been considered.

Our paper is devoted to looking for structural realizations

determined by the given 11-element set. One of the authors

has carried out a similar search in connection with biopoly-

mers: as it happens, the structures of quite different objects

such as C60 and an �-helix are determined by the same

symmetries originating from the PSL2(11) group (Samoylo-

vich & Talis, 2014). In particular, it was shown in the paper

cited that the substructure of a biplane may be identified with

a flat development of an identity period for the cylindrical

approximation of an �-helix, and this identification is in good

accordance with the experimental data.

To solve the problem considered in this paper we are using

both the PSL2(11) group and its supergroups, i.e. Mathieu

groups M11 and M12.

The 2-(11, 5, 2) biplane used in Konstant (1995) and Lijnen

et al. (2007) is the constituent part of the Steiner system

S(4, 5, 11). The Steiner system S(4, 5,11) is defined as a

subdivision of a collection of 11 positive integers (1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 0) onto 66 five-element blocks (Brown, 2004) and

can be constructed from Galois field p = 11 as follows.

Nonzero squares of GF(11) are numbers 1, 3, 4, 5, 9: 12 = 1, 22

= 4, 32 = 9, 42 = 16� 11 = 5, 52 = 25� 11 � 2 = 3, 62 = 36� 11 � 3

= 3, 72 = 49� 11 � 4 = 5, 82 = 64� 11 � 5 = 9, 92 = 81� 11 � 7 = 4,

102 = 100 � 11 � 9 = 1. These numbers 1, 3, 4, 5 and 9 form an

initial block B1 = (13459) of the biplane 2-(11, 5, 2).

With the definition of the biplane as the 2-(11, 5, 2) design,

each element of it belongs to five blocks, and each pair of

elements belongs to two blocks. In accordance with Brown

(2004), the 4-(11, 5, 1) design, i.e. the Steiner system S(4, 5, 11),

can be generated by the initial block B1 = 13459:
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Table 1
Presence of 11-vertex cluster in different structures.

Tetrahedral variant (Fig. 2b) Octahedral variant (Fig. 2a)

Phase (structure type)
Mode of presence in
crystalline structure Phase

Mode of presence in
crystalline structure

K8In11, K8Tl11 (present in
liquid state also)

Isolated 11-vertex cluster CsMgD3 Isolated 11-vertex cluster

Al10Mn3, Al5Co2 (D811),
Al24V3, and many isomorphic
compounds

Continuous network of
11-vertex tetrahedral clusters as
intersection of three icosahedra

!-Ti, !-Zr (high-pressure
modifications),
!-phase (‘monatomic’ C32)
is an intermediate product
of martensitic transformation
in the multitude of
commercial Ti- and Zr-based alloys

Continuous network of
11-vertex octahedral clusters in
tiling of hexagonal prisms

�-brass Cu5Zn8 (D82), Ti2Ni,
Al13Cr4Si4 (Fe,W)6C (E93),
Th6Mn23 (D8a) and many
isomorphic compounds, CsBi2F7

Continuous network of
11-vertex clusters as
intersection of four icosahedra

AlB2 (C32) Ni2In (B82) and many
isomorphic compounds

Continuous network of
11-vertex octahedral clusters in
tiling of hexagonal prisms



Sð4; 5; 11Þ ¼ fB1 þ kjk 2 ½0; 1; . . . X�g

[ f�ðB1 � nÞ þ kjn 2 B1; k 2 ½0; 1; . . . X�g: ð1Þ

Here all blocks of the biplane state are in the first pair of

braces, the second pair of braces corresponds to the rest of

the Steiner system S(4, 5, 11), � is the permutation

(1X)(25)(37)(48)(69)(0).

The formula (1) shows the generation of biplane blocks by a

shift of the starting block B1 by k, with k belonging to the

interval between 1 and 10. For example, by adding numbers

from 0 to 10 to each element of B1 we obtain all 11 biplane

blocks: B1 = 13459; B2 = 2456X; B3 = 35670; B4 = 46781; B5 =

57892; B6 = 689X3; B7 = 79X04; B8 = 8X015; B9 = 90126; BX =

X1237; B0 = 02348. The rest of the blocks of the Steiner system

S(4, 5, 11) are defined by the second pair of braces, so by

subtracting a unit from each element of block B1 we obtain

five integers 02348; these five integers are transferred into

05784 under the action of the � permutation. After adding k =

2 to each member of 05784 we obtain block 279X6 of the

Steiner system S(4, 5, 11) shown in Table 2. The calculated

set 279X6 is placed in the third line of the sixth column of

Table 2, so it can be labelled as block B36. To generate the

whole S(4, 5, 11) system this operation is repeated for the rest

of the elements of the initial block of the biplane, i.e. for 3, 4,

5, 9.

The left column (with bold figures) represents the biplane

2-(11, 5, 2), and biplane blocks Bij now also obtain two

subscripts. One must note some properties of the Steiner

system S(4, 5, 11) which will be used later on. A triple of

integers belongs to four blocks only, while a quadruple of

integers belongs to a single block only. These exclusions are

determined by the symmetry of the S(4, 5, 11) system.

The PSL2(11) group consists of permutations of block

elements of the biplane, for example permutation � =

(1)(3)(459)(27X)(068), �3 = 1, generates the cyclic group of

the third order C3 = {�, �2, 1}. Second-order permutations � =

(13)(42)(57)(9X)(0)(68), � = (13)(40)(56)(98)(7)(2X), 	 =

(13)(20)(76)(X8)(5)(49) in combination with C3 make up the

D3 group. The PSL2(11) group is the product of the cyclic

group C11 and rotation group Y of an icosahedron [not a direct

product of groups, in accordance with Konstant (1995, p. 965)];

this means that every element g can be uniquely written as g =

cy where c 2 C11 and y 2 Y.

The set of 11 blocks of the biplane is isomorphic to the coset

of 11 classes in the right coset decomposition of PSL2(11) by

the subgroup Y:

PSL2ð11Þ ¼ C11 � Y ¼
[11

i¼1

giY; g1 ¼ 1;

gi =2Y � C3 ¼ f�; �
2; 1g: ð2Þ

In decomposing PSL2(11) onto double cosets, 11 coset classes

(2) are divided into five subsets which are C3-invariant:

PSL2ð11Þ ¼ C11 � Y ¼
[5

k¼1

C3gkY ¼ D1 � Y
[5

k¼3

C3gkY

¼ Y [ �Y
[5

k¼3

C3gkY; �C3 ¼ C3�; ð3Þ

where {1, d} = D1 6� Y. It means the splitting of the 11-block set

of the biplane onto subsets of 2 + 3� 3 blocks by the action of

the permutation �. Here two blocks correspond to cosets Y

and �, and 3 � 3 labels three triplets of blocks corresponding

to 3 � 3 = 9 cosets C3g3Y, C3g4Y, C3g5Y. The permutation �
maps the initial B11 block into the BX1 block. This permutation

corresponds to the twofold axis orthogonal to the threefold

axis, and the twofold axis transfers the triple 459 into 27X. The

permutation � belongs to the D3 supergroup of the C3 group;

therefore these two blocks B11 = 13459 and BX1 = 1327X =

�B11 are unchanged under the action of � (the enumeration of

blocks is determined by their position in Table 2). The

remaining nine blocks decompose into three triples (each

triple is positioned in the same line of Table 3), and blocks in

each triple are mapped into each other under the action of the

permutation �.

There are two non-conjugate subgroups Y and Y0 in the

PSL2(11) group (Konstant, 1995; Lijnen et al., 2007). The

automorphisms group of the Steiner system S(4, 5, 11) is the

Mathieu group M11 = [66
i miC2Y , which contains the auto-

morphisms group PSL2(11) of the biplane and the PSL02(11)

group non-conjugate to it, C2 is the cyclic group of order 2.

These two subgroups of the M11 group (with index 12) have

the common subgroup C3 = {�, �2, 1}. By Conway & Sloane

(1999, ch. 10, section 1.5) the 2M122 group possesses the

automorphisms 
, 
2 = 1, 
 C3 

�1 = C3, so, also by Conway &

Sloane (1999, ch. 10, section 1.5), the relationships (3) allow us

to define

PSL02ð11Þ ¼
[5

k¼1


C3gkY ¼ Y [ �Y
[5

k¼3

C3
gkY; g1 ¼ 1;

C3 ¼ f�; �
2; 1g; ð4Þ
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Table 2
The Steiner system S(4, 5, 11).

13459 07293 03618 0412X 06X59 05784
2456X 183X4 14729 15230 1706X 16895
35670 29405 2583X 26341 28170 279X6
46781 3X516 36940 37452 39281 38X07
57892 40627 47X51 48563 4X392 49018
689X3 51738 58062 59674 504X3 5X129
79X04 62849 69173 6X785 61504 6023X
8X015 7395X 7X284 70896 72615 71340
90126 84X60 80395 819X7 83726 82451
X1237 95071 914X6 92X08 94837 93562
02348 X6182 X2507 X3019 X5948 X4673

Table 3
The subset of 3 � 3 = 9 blocks of the biplane 2-(11, 5, 2).

B91 = 16902 B41 = 18467 B81 = 1058X
B01 = 30482 B31 = 36507 B61 = 3896X
B51 = 57982 b71 = 9X407 B21 = 4256X



where 
 gk = mk is the element of the M11 group not belonging

to the PSL2(11) group, 
� = �.

Relationships (3) and (4) define an existence of two 11-

block subsets of the S(4, 5, 11) system; these subsets are C3-

invariant and can be mapped into each other by the trans-

formation 
. The entity of the 
 transformation is explained

below.

The initial block B11 intersects with the biplane blocks Bn1

from Table 2 by two integers, with at least one integer

belonging to the subset A = {4, 5, 9}. At least one integer in

each Bn1 block belongs to the subset C = {0, 6, 8}, since the Bn1

block can be represented in the form of bcaxy, where b; c; a

are integers from B11, C, A; integers x; y belong to K =

[0, . . . X], but do not coincide with b; c; a. We can show the

existence of the b1c1a1a2y block with b1 2 B11, c1 2 C, a1, a2 2A

among four b1c1a1xy blocks of the S(4, 5, 11). By definition a2

= �(a1), so there exists the transformation 
 mapping the

bca1xy biplane blocks into the bca1�(a1)y blocks of the Steiner

system S(4, 5, 11). In other words, the transformation 

complying with relationship (4) leaves invariant the first three

columns in nine blocks of the biplane, and allows us to obtain

the fourth column from the third one by the permutation

(594). The results of that operation are shown in the middle

column in Table 4. The left column repeats three triples of

blocks from Table 3; here blocks belonging to the same

triple are marked by the same type (roman, bold, italic). Since

each quadruple is contained only in the single block of the

S(4, 5, 11), each quadruple obtained by the transformation 
 is

supplemented uniquely by the fifth element, thus forming one

of the S(4, 5, 11) blocks. Nine blocks of the S(4, 5, 11) mapped

by nine blocks of the biplane are displayed in the right vertical

column of Table 4, the supplementing fifth element marked by

underlining.

Complying with (4), the block subset of the S(4, 5, 11)

system can be mapped into the other subset by the auto-

morphism �; that other subset is also C3-invariant, and

uniquely corresponds to cosets of the M11 group:

�1Y [ �2�Y
[5

k¼3

C3�k�i
gkY �
[66

i

miC2Y ¼ M11: ð5Þ

Here �1, �2� are elements of the D3 group, �i 2 C3 = {�, �2, 1},

�k�i
gk = mk are elements of the M11 group. Here the

considered transformations only change the number of edges

meeting in a given vertex, so we will be limited by auto-

morphisms � which either preserve the whole block, or

preserve three elements.

The permutation � = (1)(459)(3) determines the possibility

to regard the B11 = 13459 block as two regular tetrahedra with

vertices labelled as 1, 4, 5, 9 and 3, 4, 5, 9 and sharing the

common face 459; opposite vertices 1 and 3 are lying on

the common threefold symmetry axis of the cluster in Fig.

2(b). In the presence of the threefold axis (the C3 group)

vertices 1 and 3 are unchanged by cyclic permutations 4!5,

5!9, 9!4 etc.

The generation (1) of the Steiner system S(4, 5, 11) from the

initial B11 block (corresponding to the joining of two tetra-

hedra), and restrictions imposed on �, determine the possibi-

lity of a tetrahedral–triangular interpretation of block subsets

of the S(4, 5, 11) system, i.e. the interpretation as equi-edged

joins of tetrahedra (triangles) sharing common faces (edges).

For example, 15907, 1946X and 14582 blocks mapped from the

biplane by the 
 transformation define three tetrahedra

attached to the 1459 tetrahedron by common faces (‘top’

tetrahedra), and blocks 35962, 39487 and 3450X define,

respectively, three ‘bottom’ tetrahedra attached by common

faces to the 3459 tetrahedron. All tetrahedra are regular, and

all vertices of the cluster in Fig. 2(b) get the single-valued

enumeration (see Fig. 3). As one can see, each block from the

remaining triple particular blocks of the Steiner system (B64 =

59476, B32 = 45920, B05 = 945X8, Table 4) defines the join of

three regular triangles with the common (‘equatorial’) edge.

Vertices of the equatorial edge are underlined.

Thus, ten cosets of the M11 group given by the relationship

(5) with the conditions �1 = �2� = �k = 1, (�2 = �, �2 = 1)

determine the initial block and nine blocks in Table 4 having

one-to-one correspondence with the 11-vertex tetrahedral

cluster in Fig. 3.
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Figure 3
The tetrahedral interpretation of the biplane 2-(11, 5, 2) in the Steiner
system S(4, 5, 11) coincides with a tetrahedral variant of the 11-vertex
cluster in Fig. 2(b) and defines uniquely the enumeration of cluster
vertices. In accordance with the permutation � = (1)(3)(459)(27X)(068)
vertices 1 and 3 are positioned on the threefold axis, while vertices in
triplets (4, 5, 9), (2, 7, X) and (0, 6, 8) are connected by the threefold axis.

Table 4
Mapping of nine blocks of the 2-(11, 5, 2) biplane into nine blocks of the
Steiner system S(4, 5, 11).

The initial block
of the biplane
from the first column
of the S(4, 5, 11)

The result of the
transformation 

over the first four
elements of the
initial block

The block of the
S(4, 5, 11), mapped
by 
 from
the initial block
of the biplane

B91 = 16902 1694 BX3 = 1694X
B41 = 18467 1845 B96 = 18452
B81 = 1058X 1059 BX2 = 10597
B01 = 30482 3045 B65 = 3045X
B31 = 36507 3659 BX6 = 36592
B61 = 3896X 3894 BX5 = 38947
B51 = 58972 5894 B05 = 5894X
B71 = 904X7 9045 B32 = 90452
B21 = 4652X 4659 B64 = 46597



In our approach physical objects (atomic clusters) are

juxtaposed to the block subset of the Steiner system

S(4, 5, 11), which in its turn is juxtaposed to the cosets of the

decomposition (5). The similar juxtaposition of the graph of

the C60 molecule to the factorization of the PSL2(11) group by

Z11 was fulfilled in the work by Konstant (1995) cited above.

Thus, relationships (2)–(5) allow us to select the block subsets

of the Steiner system having one-to-one correspondence with

11-vertex equi-edged triangulated clusters (i.e. face-to-face

tetrahedra joining and/or edge-to-edge triangles joining).

3. Symmetry-possible transformations of the 11-vertex
cluster

It was suggested that the polymorphic transformation in

metals between f.c.c., b.c.c. and h.c.p. modifications should be

considered as a transformation of coordination polyhedra by

throwing over a minimal quantity of edges (a permutation

between the long and short diagonals of a rhombus)

(Kraposhin et al., 2002, 2003, 2006). A juxtaposition of the

block set of the Steiner system S(4, 5, 11) and corresponding

coset classes of the M11 group to the 11-vertex cluster allows

one to associate the said edge permutations (polymorphic

transformations) with automorphisms �1, �2� and �i�k(�i)
�1, �i

2 C3 = {�, �2, 1} from relationship (5).

While block-to-block mapping, the automorphisms �k, 3	 k

	 5 preserve not less than three elements. The choice of the

retained three elements is determined by the requirement to

compose it from elements representing triples entering into

the permutation a. The choice of concrete �k (i.e. the choice of

the element of the M11 group) is defined by an affiliation of

the retained triple elements only to three more blocks. For

example, for three elements 570 of the block BX2 = 15907 =

19570 [5 belongs to (459), 7 to (27X) and 0 to (068)] such

blocks will be B31 = 36570, B16 = 84570 and B03 = 2X570.

Transformations of the initial cluster (Fig. 3) are hypotheti-

cally possible by the substitution of edge 19 by edges 36, 48

and 2X. Edges 36 and 48 exist already in the initial cluster;

hence transfer from the initial 19570 block to 36570 and 48570

blocks corresponds simply to the removal of the 19 edge in the

initial cluster. There is no 2X edge in the starting cluster, since

the transfer from the 19570 to 2X570 block (determined by �3)

can define such a cluster transformation when its vertex, edge

and face numbers are unchanged.

By using the permutations � and �2 to the initial BX2 =

19570 and mapped block B03 = 2X570 one can obtain two

block subsets with three blocks in each subset (the first and

second lines in Table 5), which are C3-invariant and mapped

into each other in one column (i.e. from one line to the other)

by the �3 automorphism. Blocks in the first line correspond to

three ‘top’ tetrahedra of the 11-vertex cluster in Fig. 3 and

should be mapped into the blocks of the second line; however

by mapping blocks in one column, in the general case we

cannot preserve a maximal quantity of edges. In fact, the �3

mapping of the 19570 block transfers it into the 2X570 block

and ensures the preservation of edges at three vertices 5, 7 and

0 while substituting the 19 edge by the 2X edge. While

mapping the 19570 block into the 729X6 block the ��3�
�1

automorphism ensures the preservation of edges at four

vertices 5, 0, X and 6 by changing the 19 edge by the 72 edge.

While mapping the 19570 block into the X7428 block the

�2�3�
�2 automorphism ensures the preservation of edges at

five vertices 5, 0, 4, 2 and 8 by changing the 19 edge by the X7

edge. The edges belonging to these five vertices are not edges

of the 197X ‘rhombus’ (Fig. 3), so while mapping the 19570

block onto the X7428 block, the �2�3�
�2 automorphism will

correspond to change the 19 rhombus diagonal by the 2X

diagonal, i.e. a 2�-disclination. By using three such 2�-

disclinations (C3-invariant) one can map the first line in Table

5 into the fourth line of the same column; this mapping

corresponds to the transformation of each tetrahedron

belonging to the triple of ‘top’ tetrahedra in Fig. 3. In Tables

5–9 two integers corresponding to the flipped edge are

distinguished in a block by spacing.

Similarly, for the three ‘bottom’ tetrahedra we obtain three

other pairs of blocks (Table 6).

The transfer from the upper to the lower lines of blocks

(Tables 5 and 6) is effected by the substitution of non-

coincident elements; this substitution corresponds to skipping

of the 19 edge and inserting the 2X edge, skipping the 14 edge

and inserting the 72 edge, skipping the 15 edge and inserting

the X7 edge and so ion. Fig. 4 shows this edge-skipping–

inserting process as two snapshots of the ball-and-stick model.

The skipped edges 19, 14 or 15 are designated by the black

magnetic stick. One can easily see the transfer from three

tetrahedra sharing the black common edge (Fig. 4a) into an

octahedron (Fig. 4b).

The last three blocks corresponding to triples of triangles

with a common edge are unchanged; the angle is only changed

between triangle planes not coincident to the common 459

face.

The above-considered permutations of edges reconstruct

the starting cluster. These permutations correspond to

mapping of nine blocks in the relationship (5). Since the
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Table 5
Three block pairs in the S(4, 5, 11) system corresponding to trans-
formations of ‘top’ tetrahedra in Fig. 3.

Automorphism of
the S(4, 5, 11)

Blocks corresponding to ‘top’ tetrahedra
of cluster in Fig. 3

No mapping 19 570 14 9X6 15 428
�3 2X 570 72 9X6 X7 428
��3�

�1 72 9X6 X7 428 2X 570
�2�3�

�2 X7 428 2X 570 72 9X6

Table 6
Three block pairs in the S(4, 5, 11) system corresponding to trans-
formations of ‘bottom’ tetrahedra in Fig. 3.

Automorphism of
the S(4, 5, 11)

Blocks corresponding to ‘bottom’ tetrahedra
of cluster in Fig. 3

No mapping 39 562 34 987 35 40X
�4 08 562 60 987 86 40X
��4�

�1 60 987 86 40X 08 562
�2�4�

�2 86 40X 08 562 60 987



mapped nine blocks from Table 4 intersect with the initial

block, thus by (5) there must be mapping of the initial block

into blocks of the S(4, 5, 11) intersecting with the mapped

blocks in Tables 5 and 6. At �1 = �, �2 = 1 one obtains mapping

of the initial block 13459 onto the C3-invariant 1327X and

13068 blocks which intersect with the blocks in the lower lines

of Tables 5 and 6 by the triples 27X and 068. Thus, the above-

considered edge permutation corresponds to mapping of

13459 onto 1327X and 13068, i.e. two tetrahedra 127X and

3068 arise as the tetrahedral caps for emerged octahedra.

Then the permutation of blocks shown in Table 7 corresponds

to the reconstruction of the 11-vertex tetrahedral cluster (Fig.

3) into two one-capped octahedra (Fig. 5).

In case the permutation is fulfilled only for three top

tetrahedra or for three bottom tetrahedra (Table 8), the

octahedron with two tetrahedral caps will be formed as shown

in Fig. 6 (here there are three more tetrahedra attached to one

cap). In the present case edges 19, 14 and 15 of the invariable

blocks 19 570, 14 9X6 and 15 428 are parts of the 13459 block,

and this block retains the upper inner tetrahedron 1459.

It is clear that the configuration of the cluster in Fig. 5

coincides with hexagonal close packing and/or with the

stacking fault (twin) by the {111} plane of the face-centred

cubic packing. Without three additional tetrahedra (vertices 2,

7, X) the configuration in Fig. 6 corresponds to the 60


rhombohedron for both close packings, i.e. to f.c.c. and h.c.p.

To obtain one more configuration – three-capped trigonal

prism (a Bernal polyhedron with nine vertices, Z9) and two

vertical tetrahedral caps – one must take the block set {1327X,

13068; 2X570, 729X6, X7428; 08562, 60987, 8640X; 45920,

59476, 945X8} as the initial blocks. That set defines the

configuration of two one-capped octahedra (Fig. 5). The triple

420 is selected in the 45920 block which maps three regular

triangles 459, 425 and 405 with the common edge 45. The triple

420 is also contained in the 38420, 76420 and 1X 420 blocks.

Similarly to the derivation of the preceding configuration,
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Table 7
Block permutations in the Steiner system S(4, 5, 11) transforming the
tetrahedral cluster (Fig. 3) into two one-capped octahedra (Fig. 5).

13459! 1327X
149X6! 2X570
15428! 729X6
19570! X7428
39562! 8640X
34987! 08562
3540X! 60987
13459! 13068
45920! 45920
59476! 59476
945X8! 945X8

Table 8
Block permutations in the Steiner system S(4, 5, 11) for transforming the
tetrahedral cluster (Fig. 3) into the 60
-rhombohedron with three
additional caps (Fig. 6).

13459! 13459
19570! 19570
149X6! 149X6
15428! 15428
13459! 13068
39562! 8640X
34987! 08562
3540X! 60987
45920! 45920
59476! 59476
945X8! 945X8

Figure 4
A ball-and-stick model illustrating the transfer from the face-to-face join
of three tetrahedra (a) into an octahedron (b) by the diagonal flipping
(see Fig. 1). The common edge of three tetrahedra (1–5) is shown in black.
The numbering of vertices corresponds to Fig. 3.

Figure 5
Two one-capped octahedra are the result of the transformation of the 11-
vertex cluster in Fig. 2(b) by the substitution of blocks in the Steiner
system S(4, 5, 11) in accordance with Table 7.



blocks 1X420 and 38420 must be deleted because edges 1X

and 38 are present but not edge 76. By action of the permu-

tation � one obtains two more pairs of blocks from the 45920

and 76420 pair (Table 9).

This set defines the substitution of edges 59, 49 and 45

by edges 76, X8, 20. The obtained set of blocks {1327X,

13068, 2X570, 729X6, X7428; 08562, 60987, 8640X; 76420,

X8576, 209X8} defines the Bernal polyhedron Z9 of liquid

metal with two vertical tetrahedra 1327X and 13068 (Fig. 7).

The Z9-polyhedron is also a building unit for the crystal

structure of many compounds: carbides, borides, silicides,

phosphides of transition metals, for examples Fe3C, Cr7C3,

Fe3P, Pd3Si (Schubert, 1964). It was shown by Hyde et al.

(1979) that three-capped trigonal prism Z9 is also the struc-

tural unit of twin planes {112} for h.c.p. and {113} for f.c.c.

packings. This relationship between twin and Fe3C carbide

structures became a foundation for the model of eutectoid and

martensitic transformations in steels by Kraposhin et al.

(2013).

One needs to be convinced that the Steiner system also

contains a transition between two 11-vertex configurations

shown in Fig. 2, i.e. the transformation of eight regular tetra-

hedra into three octahedra sharing a common edge. One can

take blocks {13459, 19570, 149X6, 15428, 39562, 34987, 3540X,

45920, 59476 and 945X8} as an initial collection that is the

cluster in Fig. 2. Similarly to the preceding derivation in the

block 45920 (which maps three regular triangles 459, 425 and

405) the triple 420 is selected and so on. As a result one

obtains the collection {13459, 19570, 149X6, 15428, 39562,

34987, 3540X, 76420, X8576 and 209X8}, but now we consider

the block 13459 as a mapping of the join of three triangles 134,

135 and 139 sharing the common edge 13. In the outcome

three octahedra sharing the common edge 13 are obtained

(Fig. 8). The join of three regular octahedra about a common

edge is possible only in the four-dimensional {3, 4, 3} polytope;

hence three-dimensional projection in Figs. 2(a) and 8 inevi-

tably has non-equal edges.

The summary of mutual mapping between blocks of the

Steiner S(4, 5, 11) system corresponding to the above-

considered reconstructions of the 11-vetex cluster is shown in

Table 10.
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Figure 6
The octahedron with five tetrahedral caps (60
-rhombohedron in the
closest crystalline packing with three additional tetrahedral caps) is
the result of the transformation of the 11-vertex in Fig. 2(b) by the
substitution of blocks in the Steiner system S(4, 5, 11) in accordance with
Table 8.

Figure 8
The substitution of blocks in the Steiner system S(4, 5, 11) in accordance
with the ultimate left column in Table 10 ensures the transfer from the
tetrahedral to octahedral interpretation of the Steiner system S(4, 5, 11).

Figure 7
The five-capped trigonal prism is the result of the transformation of the
11-vertex in Fig. 2(b) by the substitution of blocks in the Steiner system
S(4, 5, 11) in accordance with Table 9. Without vertices 1 and 3 it
coincides with the nine-vertex Bernal polyhedron.

Table 9
The transfer from the upper three blocks to lower triple generates a nine-
vertex trigonal prism (Bernal polyhedron) with two tetrahedral vertical
caps (Fig. 7).

59 420 94 576 45 9X8
76 420 X8 576 20 9X8



4. Discussion

The abundance of 11-vertex clusters (both in tetrahedral and

octahedral conformations) in the observed crystalline struc-

tures (see x1) can be considered as a physical realization of the

abstract symmetry constructions analysed here. The basic

symmetry construction used by us is the factorization of the

M11 group [supergroup of the PSL2(11) group] by the icosa-

hedral subgroup Y. The results presented in the paper show

the possibility of describing the physical phenomenon of

polymorphic (martensitic) transformations by the symmetries

determined by the M11 group.

Without condition of equal edges in the starting 11-vertex

cluster (Fig. 2b) one can draw all configurations shown in Figs.

3–8 without any edge permutations. By imposing the equal-

edge condition onto initial and end configurations of the 11-

vertex cluster, one can use the triangular–tetrahedral inter-

pretation of the block subset of the Steiner S(4, 5, 11) system

to determine the symmetry-possible transformations of that

cluster, and, therefore to determine trajectories of mutual

reconstructions of metallic f.c.c., b.c.c. and h.c.p. structures. In

the framework of the approach used here, the generating

clusters for the structures of carbides (and borides, silicides,

phosphides) formed by transition metals can be determined as

well (the nine-vertex Bernal polyhedron). Also, it can be

shown that by the same approach the other triangulated

N-vertex equi-edged Bernal polyhedra ZN;N = 8, 9 and 10

(Z8-trigondodecahedron, Z10 two-capped twisted cube), and

11-vertex fragment of the irrational Coxeter–Bordijk helix

(Boerdijk, 1952; Coxeter, 1985) can be derived.

As a matter of fact, the tetrahedral variant of the 11-vertex

cluster in Figs. 2 and 3 represents three seven-vertex fragments

of the Coxeter–Bordijk tetrahedral helix with the length of

four tetrahedra each and intersecting between each other by

two tetrahedra: 11 = 3 � 7 � 2 � 5. As can be shown, there is

the automorphism � complying with (5) and mapping blocks

68907, 45920 and 94X58 of the right column in Table 6 onto

blocks 68951, 4598X and 94X70, and leaving blocks 1327X,

13068, X7428, 08562 and 59476 intact. The obtained eight-

block set defines the face-to-face join of two such seven-vertex

clusters from the tetrahedral helix: 11 = 2 � 7 � 3.

Both the 11-vertex tetrahedral cluster in Fig. 2(b) and the

11-vertex fragment of the Coxeter–Bordijk tetrahedral helix

embed into the {3, 3, 5} polytope, which is a tiling of the three-

dimensional sphere (determined in four-dimensional space)

onto 600 regular tetrahedra (Coxeter, 1973). Symmetries of

that tiling permit (Nelson, 1983) us to derive all known

building units for metallic structures having Z vertices: Bernal

polyhedra (Z8, Z9, Z10), Frank–Kasper polyhedra (Z14, Z15,

Z16) and two non-canonical polyhedra Z11 and Z13. In

particular, the Z11 polyhedron has been derived by Nelson

from the symmetries of the {3, 3, 5} polytope as the net result

of a disclination action. In the framework of our approach Z11

can be derived from Z9 with two tetrahedral caps. One feature

of the Z11 polyhedron is the presence of one sixfold vertex

with two fourfold vertices. Undoubtedly, this Z11 and similar

polyhedra are significant in the structure and structural

transformation of metallic phases, but this topic is beyond the

scope of our paper.

The case of the non-canonical Z11 polyhedron (an irregular

11-vertex triangulation of a sphere) illustrates one of our

results: the one-to-one mapping of two certain blocks of the

Steiner system S(4, 5, 11) corresponds to the 2�-disclination,

fulfilling the diagonal flipping in a rhombus.

Enumeration of all mapped blocks complying with the

relationship (5) in the Steiner system S(4, 5, 11) determines a

specific class of 11-vertex equi-edged triangulated clusters.

The mutual transformations between members of this class

provide the transfer from close-packed tetrahedral fragments

of the {3, 3, 5} polytope up to 11-vertex triangulated irregular

sphere tilings and determine local reconstructions during

polymorph transformations in metals.

So, the derivation of this class of clusters is ensured by one-

to-one correspondence between cosets of Mathieu group M11,

a block set of the Steiner system S(4, 5, 11) and 11-vertex equi-

edged triangulated clusters. This correspondence was realized

only in the framework of generalized crystallography.

5. Conclusions

This paper proposed a structural interpretation of the Steiner

system S(4, 5, 11). The interpretation is based on the revealed

one-to-one correspondence between cosets of the Mathieu

group M11, a block set of the Steiner system S(4, 5, 11) and 11-

vertex equi-edged triangulated clusters.

The special class of triangulated equi-edged 11-vertex

clusters complying with structural interpretation of the Steiner

system S(4, 5, 11) has been defined. Mutual transformations of

clusters belonging to this special class ensure the transition

from close-packed tetrahedral fragments of the {3, 3, 5}

polytope to 11-vertex irregular triangulations of a sphere. The

2�-disclination (diagonal flipping in a rhombus) corresponds

to the mutual mapping of certain blocks of the S(4, 5, 11).

Automorphisms of the Steiner system S(4, 5, 11) determine

uniquely mutual transformations of 11-vertex clusters

belonging to the defining class; the said transformations
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Table 10
Summary of the mutual mapping between blocks of the S(4, 5, 11) system
giving receiving different crystalline structures in metals.

Three
octahedra
with a
common
edge

Eight
regular
tetrahedra

Two
seven-vertex
clusters

Trigonal
prism
with five
caps

60
-
rhombohedron
with three
caps

13459  13459! 1327X! 1327X! 13459
19570  19570! X7428! X7428! 19570
149X6  149X6! 2X570! 2X570! 149X6
15428  15428! 729X6! 729X6! 15428
13459  13459! 13068! 13068! 13068
39562  39562! 8640X! 8640X! 8640X
34987  34987! 08562! 08562! 08562
3540X  3540X! 60987! 60987! 60987
76420  59420! 59420! 76420! 59420
X8576  94576! 94576! X8576! 94576
209X8  459X8! 459X8! 209X8! 459X8



correspond to local reconstructions in the polymorphic

transformations in metals.
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